Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.648
Filtrar
1.
Antiviral Res ; 225: 105877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561077

RESUMO

The conventional inactivated split seasonal influenza vaccine offers low efficacy, particularly in the elderly and against antigenic variants. Here, to improve the efficacy of seasonal vaccination for the elderly population, we tested whether supplementing seasonal bivalent (H1N1 + H3N2) split (S) vaccine with M2 ectodomain repeat and multi-subtype consensus neuraminidase (NA) proteins (N1 NA + N2 NA + flu B NA) on a virus-like particle (NA-M2e) would induce enhanced cross-protection against different influenza viruses in aged mice. Immunization with split vaccine plus NA-M2e (S + NA-M2e) increased vaccine-specific IgG antibodies towards T-helper type 1 responses and hemagglutination inhibition titers. Aged mice with NA-M2e supplemented vaccination were protected against homologous and heterologous viruses at higher efficacies, as evidenced by preventing weight loss, lowering lung viral loads, inducing broadly cross-protective humoral immunity, and IFN-γ+ CD4 and CD8 T cell responses than those with seasonal vaccine. Overall, this study supports a new strategy of NA-M2e supplemented vaccination to enhance protection against homologous and antigenically different viruses in the elderly.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Idoso , Humanos , Camundongos , Animais , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Vírus da Influenza A Subtipo H3N2 , Estações do Ano , Anticorpos Antivirais , Proteção Cruzada , Camundongos Endogâmicos BALB C
2.
Open Vet J ; 14(1): 350-359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633177

RESUMO

Background: Equine influenza (EI) is a transmissible viral respiratory sickness of the Equidae family. Two viruses, H7N7 and H3N8 caused EI; however, H7N7 has not been detected for decades. H3N8 has circulated and bifurcated into Eurasian and American lineages. The latter subsequently diversified into Kentucky, South America, and Florida sub-lineages. Florida clade 1 (FC1) and Florida clade 2 (FC2) strains are the only circulating EI viruses (EIVs) in the meantime. Immunization is considered the major means for the prevention and control of EI infection. Using disparate technologies and platforms, several vaccines have been developed and commercialized. According to the recommendations of the World Organization for Animal Health (WOAH), all commercial vaccines shall comprise representatives of both FC1 and FC2 strains. Unfortunately, most of the commercially available vaccines were not updated to incorporate a representative of FC2 strains. Aim: The purpose of this research was to develop a new EI vaccine candidate that incorporates the hemagglutinin (HA) antigen from the currently circulating FC2. Methods: In this study, we report the expression of the full-length recombinant HA gene of FC2 in the baculovirus expression system. Results: The HA recombinant protein has been proven to maintain its biological characteristics by hemadsorption (HAD) and hemagglutination tests. Moreover, using a reference-specific serum, the specificity of the HA has been confirmed through the implementation of immunoperoxidase and western immunoblotting assays. Conclusion: In conclusion, we report the expression of specific biologically active recombinant HA of FC2, which would act as a foundation for the generation of an updated EI subunit or virus vector vaccine candidates.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A Subtipo H7N7 , Infecções por Orthomyxoviridae , Vacinas , Cavalos , Animais , Hemaglutininas , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Baculoviridae
3.
Vaccine ; 42(11): 2770-2780, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508930

RESUMO

The COVID-19 pandemic has highlighted the need for mucosal vaccines as breakthrough infections, short-lived immune responses and emergence of new variants have challenged the efficacy provided by the first generation of vaccines against SARS-CoV-2 viruses. M2SR SARS-CoV-2, an M2-deleted single-replication influenza virus vector modified to encode the SARS-CoV-2 receptor binding domain, was evaluated following intranasal delivery in a hamster challenge model for protection against Wuhan SARS-CoV-2. An adjuvanted inactivated SARS-CoV-2 whole virus vaccine administered intramuscularly was also evaluated. The intranasal M2SR SARS-CoV-2 was more effective than the intramuscular adjuvanted inactivated whole virus vaccine in providing protection against SARS-CoV-2 challenge. M2SR SARS-CoV-2 elicited neutralizing serum antibodies against Wuhan and Omicron SARS-CoV-2 viruses in addition to cross-reactive mucosal antibodies. Furthermore, M2SR SARS-CoV-2 generated serum HAI and mucosal antibody responses against influenza similar to an H3N2 M2SR influenza vaccine. The intranasal dual influenza/COVID M2SR SARS-CoV-2 vaccine has the potential to provide protection against both influenza and COVID.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Cricetinae , Influenza Humana/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , Pandemias/prevenção & controle , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Adjuvantes Imunológicos
4.
Front Immunol ; 15: 1322879, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482020

RESUMO

Orf virus (ORFV) is a large DNA virus that can harbor and efficiently deliver viral antigens in swine. Here we used ORFV as a vector platform to deliver chimeric hemagglutinins (HA) of Influenza A virus of swine (IAV-S). Vaccine development against IAV-S faces limitations posed by strain-specific immunity and the antigenic diversity of the IAV-S strains circulating in the field. A promising alternative aiming at re-directing immune responses on conserved epitopes of the stalk segment of the hemagglutinin (HA2) has recently emerged. Sequential immunization with chimeric HAs comprising the same stalk but distinct exotic head domains can potentially induce cross-reactive immune responses against conserved epitopes of the HA2 while breaking the immunodominance of the head domain (HA1). Here, we generated two recombinant ORFVs expressing chimeric HAs encoding the stalk region of a contemporary H1N1 IAV-S strain and exotic heads derived from either H6 or H8 subtypes, ORFVΔ121cH6/1 and ORFVΔ121cH8/1, respectively. The resulting recombinant viruses were able to express the heterologous protein in vitro. Further, the immunogenicity and cross-protection of these vaccine candidates were assessed in swine after sequential intramuscular immunization with OV-cH6/1 and OV-cH8/1, and subsequent challenge with divergent IAV-S strains. Humoral responses showed that vaccinated piglets presented increasing IgG responses in sera. Additionally, cross-reactive IgG and IgA antibody responses elicited by immunization were detected in sera and bronchoalveolar lavage (BAL), respectively, by ELISA against different viral clades and a diverse range of contemporary H1N1 IAV-S strains, indicating induction of humoral and mucosal immunity in vaccinated animals. Importantly, viral shedding was reduced in nasal swabs from vaccinated piglets after intranasal challenge with either Oh07 (gamma clade) or Ca09 (npdm clade) IAV-S strains. These results demonstrated the efficiency of ORFV-based vectors in delivering chimeric IAV-S HA-based vaccine candidates and underline the potential use of chimeric-HAs for prevention and control of influenza in swine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Vírus do Orf , Infecções por Orthomyxoviridae , Animais , Suínos , Hemaglutininas/genética , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H1N1/genética , Anticorpos Antivirais , Imunoglobulina G , Epitopos
5.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305155

RESUMO

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Assuntos
Virus da Influenza A Subtipo H5N1 , 60550 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vírus da Parainfluenza 5 , Animais , Humanos , Camundongos , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , 60550/química , 60550/classificação , 60550/genética , 60550/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Influenza Aviária/virologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , 60514/métodos , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Administração Intranasal , Aves Domésticas/virologia , Imunoglobulina A/imunologia , Linfócitos T/imunologia
6.
Nanomedicine (Lond) ; 19(9): 741-754, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38390688

RESUMO

Aims: To develop an effective universal vaccine against antigenically different influenza viruses. Materials & methods: We generated influenza virus-like particles (VLPs) expressing the H1 and H3 antigens with or without M2e5x. VLP-induced immune responses and crossprotection against H1N1, H3N2 or H5N1 viruses were assessed to evaluate their protective efficacy. Results: H1H3M2e5x immunization elicited higher crossreactive IgG antibodies than H1H3 VLPs. Upon challenge, both VLPs enhanced lung IgG, IgA and germinal center B-cell responses compared with control. While these VLPs conferred protection, H1H3M2e5x showed greater lung viral load reduction than H1H3 VLPs with minimal body weight loss. Conclusion: Utilizing VLPs containing dual-hemagglutinin, along with M2e5x, can be a vaccination strategy for inducing crossprotection against influenza A viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Influenza Humana/prevenção & controle , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/uso terapêutico , Imunoglobulina G , Infecções por Orthomyxoviridae/prevenção & controle , Camundongos Endogâmicos BALB C
7.
Nat Commun ; 15(1): 850, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346952

RESUMO

Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Feminino , Camundongos , Animais , Humanos , Influenza Humana/prevenção & controle , Hemaglutininas , Anticorpos Antivirais , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Infecções por Orthomyxoviridae/prevenção & controle
8.
J Control Release ; 368: 275-289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382812

RESUMO

Virus like particles (VLPs) have been well recognized as one of the most important vaccine platforms due to their structural similarity to natural viruses to induce effective humoral and cellular immune responses. Nevertheless, lack of viral nucleic acids in VLPs usually leads the vaccine candidates less efficient in provoking innate immune against viral infection. Here, we constructed a biomimetic dual antigen hybrid influenza nanovaccines THM-HA@Mn with robust immunogenicity via in situ synthesizing a stimulator of interferon genes (STING) agonist Mn3O4 inside the cavity of a recombinant Hepatitis B core antigen VLP (HBc VLP) having fused SpyTag and influenza M2e antigen peptides (Tag-HBc-M2e, THM for short), followed by conjugating a recombinant hemagglutinin (rHA) antigen on the surface of the nanoparticles through SpyTag/SpyCatcher ligating. Such inside Mn3O4 immunostimulator-outside rHA antigen design, together with the chimeric M2e antigen on the HBc skeleton, enabled the synthesized hybrid nanovaccines THM-HA@Mn to well imitate the spatial distribution of M2e/HA antigens and immunostimulant in natural influenza virus. In vitro cellular experiments indicated that compared with the THM-HA antigen without Mn3O4 and a mixture vaccine consisting of THM-HA + MnOx, the THM-HA@Mn hybrid nanovaccines showed the highest efficacies in dendritic cells uptake and in promoting BMDC maturation, as well as inducing expression of TNF-α and type I interferon IFN-ß. The THM-HA@Mn also displayed the most sustained antigen release at the injection site, the highest efficacies in promoting the DC maturation in lymph nodes and germinal center B cells activation in the spleen of the immunized mice. The co-delivery of immunostimulant and antigens enabled the THM-HA@Mn nanovaccines to induce the highest systemic antigen-specific antibody responses and cellular immunogenicity in mice. Together with the excellent colloid dispersion stability, low cytotoxicity, as well as good biosafety, the synthetic hybrid nanovaccines presented in this study offers a promising strategy to design VLP-based vaccine with robust natural and adaptive immunogenicity against emerging viral pathogens.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/genética , Imunidade Celular , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C , Anticorpos Antivirais , Infecções por Orthomyxoviridae/prevenção & controle
10.
Int J Biol Macromol ; 259(Pt 1): 129259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191112

RESUMO

The influenza A virus (IAV) is a ubiquitous and continuously evolving respiratory pathogen. The intranasal vaccination mimicking natural infections is an attractive strategy for controlling IAVs. Multiepitope vaccines accurately targeting multiple conserved domains have the potential to broaden the protective scope of current seasonal influenza vaccines and reduce the risk of generating escape mutants. Here, multiple linear epitopes from the matrix protein 2 ectodomain (M2e) and the hemagglutinin stem domain (HA2) are fused with the Helicobacter pylori ferritin, a self-assembled nanocarrier and mucosal adjuvant, to develop a multiepitope nanovaccine. Through intranasal delivery, the prokaryotically expressed multiepitope nanovaccine elicits long-lasting mucosal immunity, broad humoral immunity, and robust cellular immunity without any adjuvants, and confers complete protection against H3N2 and H1N1 subtypes of IAV in mice. Importantly, this intranasal multiepitope nanovaccine triggers memory B-cell responses, resulting in secretory immunoglobulin A (sIgA) and serum immunoglobulin G (IgG) levels persisting for more than five months post-immunization. Therefore, this intranasal ferritin-based multiepitope nanovaccine represents a promising approach to combating respiratory pathogens.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Animais , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Influenza A Subtipo H3N2 , 60547 , Imunidade nas Mucosas , Ferritinas , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Administração Intranasal , Adjuvantes Farmacêuticos , Camundongos Endogâmicos BALB C
11.
Carbohydr Polym ; 328: 121689, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220319

RESUMO

Influenza A virus (IAV) poses a significant threat to human and animal health, necessitating the development of universal influenza vaccines that can effectively activate mucosal immunity. Intranasal immunization has attracted significant attention due to its capacity to induce triple immune responses, including mucosal secretory IgA. However, inducing mucosal immunity through vaccination is challenging due to the self-cleansing nature of the mucosal surface. Thiolated chitosan (TCS) were explored for mucosal vaccine delivery, capitalizing on biocompatibility and bioadhesive properties of chitosan, with thiol modification enhancing mucoadhesive capability. The focus was on developing a universal nanovaccine by utilizing TCS-encapsulated virus-like particles displaying conserved B-cell and T-cell epitopes from M2e and NP proteins of IAV. The optimal conditions for nanoparticle formation were investigated by adjusting the thiol groups content of TCS and the amount of sodium tripolyphosphate. The nanovaccine induced robust immune responses and provided complete protection against IAVs from different species following intranasal immunization. The broad protective effect of nanovaccines can be attributed to the synergistic effect of antibodies and T cells. This study developed a universal intranasal nanovaccine and demonstrated the potential of TCS in the development of mucosal vaccines for respiratory infectious diseases.


Assuntos
Quitosana , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Humanos , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , 60547 , Imunidade Celular , Compostos de Sulfidrila , Camundongos Endogâmicos BALB C , Anticorpos Antivirais
12.
Nat Immunol ; 25(3): 418-431, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225437

RESUMO

After a century of using the Bacillus Calmette-Guérin (BCG) vaccine, our understanding of its ability to provide protection against homologous (Mycobacterium tuberculosis) or heterologous (for example, influenza virus) infections remains limited. Here we show that systemic (intravenous) BCG vaccination provides significant protection against subsequent influenza A virus infection in mice. We further demonstrate that the BCG-mediated cross-protection against influenza A virus is largely due to the enrichment of conventional CD4+ effector CX3CR1hi memory αß T cells in the circulation and lung parenchyma. Importantly, pulmonary CX3CR1hi T cells limit early viral infection in an antigen-independent manner via potent interferon-γ production, which subsequently enhances long-term antimicrobial activity of alveolar macrophages. These results offer insight into the unknown mechanism by which BCG has persistently displayed broad protection against non-tuberculosis infections via cross-talk between adaptive and innate memory responses.


Assuntos
Vacina BCG , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Camundongos , Administração Intravenosa , Vacina BCG/imunologia , Células T de Memória , Imunidade Treinada , Vacinação , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle
13.
Antiviral Res ; 222: 105807, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38219914

RESUMO

The World Health Organization advices the use of a quadrivalent vaccine as prophylaxis against influenza, to prevent severe influenza-associated disease and -mortality, and to keep up with influenza antigenic diversity. Different small molecule antivirals to treat influenza have become available. However, emergence of drug resistant influenza viruses has been observed upon use of these antivirals. An appealing alternative approach to prevent or treat influenza is the use of antibody-based antivirals, such as conventional monoclonal antibodies and single-domain antibodies (sdAbs). The surface of the influenza A and B virion is decorated with hemagglutinin molecules, which act as receptor-binding and membrane fusion proteins and represent the main target of neutralizing antibodies. SdAbs that target influenza A and B hemagglutinin have been described. In addition, sdAbs directed against the influenza A virus neuraminidase have been reported, whereas no sdAbs targeting influenza B neuraminidase have been described to date. SdAbs directed against influenza A matrix protein 2 or its ectodomain have been reported, while no sdAbs have been described targeting the influenza B matrix protein 2. Known for their high specificity, ease of production and formatting, sdAb-based antivirals could be a major leap forward in influenza control.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Anticorpos Antivirais , Hemaglutininas , Neuraminidase/química , Infecções por Orthomyxoviridae/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico , Glicoproteínas de Hemaglutininação de Vírus da Influenza
14.
J Control Release ; 365: 716-728, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036004

RESUMO

Antiviral vaccine is essential for preventing and controlling virus spreading, along with declining morbidity and mortality. A major challenge in effective vaccination lies in the ability to enhance both the humoral and cellular immune responses by adjuvants. Herein, self-assembled nanoparticles based on graphene oxide quantum dots with components of carnosine, resiquimod and Zn2+ ions, namely ZnGC-R, are designed as a new adjuvant for influenza vaccine. With its high capability for antigen-loading, ZnGC-R enhances antigen utilization, improves DC recruitment, and activates antigen-presenting cells. Single cell analysis of lymphocytes after intramuscular vaccination revealed that ZnGC-R generated multifaceted immune responses. ZnGC-R stimulated robust CD4+CCR7loPD-1hi Tfh and durable CD8+CD44hiCD62L- TEM immune responses, and simultaneously promoted the proliferation of CD26+ germinal center B cells. Besides, ZnGC-R elicited 2.53-fold higher hemagglutination-inhibiting antibody than commercial-licensed aluminum salt adjuvant. ZnGC-R based vaccine induced 342% stronger IgG antibody responses compared with vaccines with inactivated virus alone, leading to 100% in vivo protection efficacy against the H1N1 influenza virus challenge.


Assuntos
Grafite , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Humanos , Adjuvantes Imunológicos/farmacologia , Imunidade Celular , Adjuvantes Farmacêuticos/farmacologia , Anticorpos Antivirais , Infecções por Orthomyxoviridae/prevenção & controle
15.
Vaccine ; 42(2): 220-228, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087714

RESUMO

Swine flu is a common disease problem in North American pig populations and swine influenza A viruses (IAV) are extremely diverse and the lack of cross protection between heterologous strains is impacting vaccine efficacy in the field. The objective of this study was to design and test a novel swine flu vaccine targeting the M2 ectodomain (M2e) of IAV, a highly conserved region within the IAV proteome. In brief, an M2e peptide was designed to match the predominant swine IAV M2 sequence based on global analysis of sequences from pigs and humans. The resulting sequence was used to synthesize the M2e peptide coupled to a carrier protein. The final vaccine concentration was 200 µg per dose, and a commercial, microemulsion-based aqueous adjuvant was added. Nine 3-week-old IAV negative piglets were randomly assigned to three groups and rooms including non-vaccinated pigs (NEG-CONTROLs) and vaccinated pigs using the intramuscular (M2e-IM) or the intranasal route (M2e-IN). Vaccinations were done at weaning and again at 2 weeks later. An in-house enzyme-linked immunosorbent assay (ELISA) was developed and validated to study the M2e IgG antibody response and demonstrated M2e-IM pigs had a higher systemic antibody response compared to M2e-IN pigs. Subsequently, an IAV challenge study was conducted. The results indicated that M2e-IM vaccinated pigs were not protected from H1N1 (US pandemic clade, global clade 1A.3.3.2) challenge despite having a strong humoral anti-M2e immune response. In conclusion, while the experimental IAV vaccine was able to induce anti-M2e antibodies, when challenged with H1N1, the vaccinated pigs were not protected, perhaps indicating that reactivity to the M2e antigen alone is not sufficient to reduce clinical signs, lesions or shedding associated with experimental IAV challenge.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Suínos , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Peptídeos , Anticorpos Antivirais
16.
Prev Vet Med ; 222: 106083, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071873

RESUMO

Influenza A virus transmission between pigs and humans has been reported periodically worldwide, and spillover events across the animal-human species barrier could lead to the next influenza pandemic. Swine exhibitions serve as a unique interface conducive to zoonotic disease transmission due to extensive commingling of pigs and humans for prolonged periods of time. The majority of zoonotic influenza A virus transmission in the United States has been linked to swine exhibitions, leading some to suggest additional controls for influenza A virus at the swine-human interface. Determining the value of the exhibition swine industry and gauging the financial impacts influenza A virus outbreaks could have on society, helps to inform adoption decisions of mitigation recommendations. This study estimates the total value of the exhibition swine industry in the United States and calculates the predicted costs of the most extreme mitigation strategy, cancelling swine exhibitions to reduce zoonotic influenza A virus transmission. Mixed methods, including a survey, were used to collect data and inform the study model. We estimated that the direct economic impact of the exhibition swine sector in 2018 was $1.2 billion. If pig shows were to be cancelled for one year, the estimated direct economic impact would be $357.1 million. A permanent, > 3-year ban on swine exhibitions would result in a $665 million economic impact, which is a 45% reduction from baseline. The direct economic impact of cancelling the swine show circuit could not be determined, as youth exhibitors may pursue alternative activities that cannot be precisely accounted for. However, the estimated loss to the swine industry justifies seeking enhanced mitigation to prevent disease transmission. Moreover, economic losses secondary to exhibition cancellations may explain hesitancy to participate in active influenza A virus surveillance efforts.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Estados Unidos/epidemiologia , Humanos , Influenza Humana/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle , Zoonoses/prevenção & controle , Recompensa
17.
Trends Immunol ; 45(1): 11-19, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103991

RESUMO

Current seasonal influenza vaccines, which mainly target hemagglutinin (HA), require annual updates due to the continuous antigenic drift of the influenza virus. Developing an influenza vaccine with increased breadth of protection will have significant public health benefits. The recent discovery of broadly protective antibodies to neuraminidase (NA) has provided important insights into developing a universal influenza vaccine, either by improving seasonal influenza vaccines or designing novel immunogens. However, further in-depth molecular characterizations of NA antibody responses are warranted to fully leverage broadly protective NA antibodies for influenza vaccine designs. Overall, we posit that focusing on NA for influenza vaccine development is synergistic with existing efforts targeting HA, and may represent a cost-effective approach to generating a broadly protective influenza vaccine.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Infecções por Orthomyxoviridae/prevenção & controle , Neuraminidase , Anticorpos Antivirais , Influenza Humana/prevenção & controle
18.
Expert Rev Vaccines ; 23(1): 39-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38037386

RESUMO

INTRODUCTION: Influenza B viruses (IBV) cause a significant health and economic burden annually. Due to lower antigenic drift rate, less extensive antigenic diversity, and lack of animal reservoirs, the development of highly effective universal vaccines against IBV might be in reach. Current seasonal influenza vaccines are formulated to induce antibodies against the Hemagglutinin (HA) protein, but their effectiveness is reduced by mismatch between vaccine and circulating strains. AREAS COVERED: Given antibodies against the Neuraminidase (NA) have been associated with protection during influenza infection, there is considerable interest in the development of NA-based influenza vaccines. This review summarizes insights into the role of NA-based immunity against IBV and highlights knowledge gaps that should be addressed to inform the design of next-generation influenza B vaccines. We discuss how antibodies recognize broadly cross-reactive epitopes on the NA and the lack of understanding of IBV NA antigenic evolution which would benefit vaccine development in the future. EXPERT OPINION: Demonstrating NA antibodies as correlates of protection for IBV in humans would be paramount. Determining the extent of IBV NA antigenic evolution will be informative. Finally, it will be critical to determine optimal strategies for incorporating the appropriate NA antigens in existing clinically approved vaccine formulations.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Vírus da Influenza B , Neuraminidase , Antígenos Virais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Infecções por Orthomyxoviridae/prevenção & controle
19.
Antiviral Res ; 221: 105785, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145757

RESUMO

The diversified classification and continuous alteration of influenza viruses underscore for antivirals and vaccines that can counter a broad range of influenza subtypes. Hemagglutinin (HA) and neuraminidase (NA) are two principle viral surface targets for broadly neutralizing antibodies. A series of monoclonal antibodies, targeting HA and NA, have been discovered and characterized with a wide range of neutralizing activity against influenza viruses. Clinical studies have demonstrated the safety and efficacy of some HA stem-targeting antibodies against influenza viruses. Broadly neutralizing antibodies (bnAbs) can serve as both prophylactic and therapeutic agents, as well as play a critical role in identifying antigens and epitopes for the development of universal vaccines. In this review, we described and summarized the latest discoveries and advancements of bnAbs against influenza viruses in both pre- and clinical development. Additionally, we assess whether bnAbs can serve as a viable alternative to vaccination against influenza. Finally, we discussed the rationale behind reverse vaccinology, a structure-guided universal vaccine design strategy that efficiently identifies candidate antigens and conserved epitopes that can be targeted by antibodies.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Infecções por Orthomyxoviridae/prevenção & controle , Hemaglutininas , Epitopos
20.
J Nanobiotechnology ; 21(1): 479, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093320

RESUMO

Vaccination is still the most promising strategy for combating influenza virus pandemics. However, the highly variable characteristics of influenza virus make it difficult to develop antibody-based universal vaccines, until now. Lung tissue-resident memory T cells (TRM), which actively survey tissues for signs of infection and react rapidly to eliminate infected cells without the need for a systemic immune reaction, have recently drawn increasing attention towards the development of a universal influenza vaccine. We previously designed a sequential immunization strategy based on orally administered Salmonella vectored vaccine candidates. To further improve our vaccine design, in this study, we used two different dendritic cell (DC)-targeting strategies, including a single chain variable fragment (scFv) targeting the surface marker DC-CD11c and DC targeting peptide 3 (DCpep3). Oral immunization with Salmonella harboring plasmid pYL230 (S230), which displayed scFv-CD11c on the bacterial surface, induced dramatic production of spleen effector memory T cells (TEM). On the other hand, intranasal boost immunization using purified DCpep3-decorated 3M2e-ferritin nanoparticles in mice orally immunized twice with S230 (S230inDC) significantly stimulated the differentiation of lung CD11b+ DCs, increased intracellular IL-17 production in lung CD4+ T cells and elevated chemokine production in lung sections, such as CXCL13 and CXCL15, as determined by RNAseq and qRT‒PCR assays, resulting in significantly increased percentages of lung TRMs, which could provide efficient protection against influenza virus challenge. The dual DC targeting strategy, together with the sequential immunization approach described in this study, provides us with a novel "prime and pull" strategy for addressing the production of protective TRM cells in vaccine design.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Camundongos , Animais , Células T de Memória , Pulmão , Células Dendríticas , Infecções por Orthomyxoviridae/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...